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J. Introduce'on

In Section II we continue with our use of transmutation theory [Dugw 86a,b],

[Dugw 87], [Giwo 86], [Giwo 87a,b] to show how these ideas may be implemented to

use with the parallel approximations to the Helmholtz equation for a stratified media

[Tapp 77]

~+ ~+ ~+~+k [n  z,r!+i v z,r!]p+,18 1 8

t!y2 r BT r2
�.1!

namely

2ik~+~+ ~+k [n  z,r ! � 1+i v z,r !]yW .
3 ur

Br Bz2 r2 cj82
�.2!

In the particular case where q z,r !:= n  z,r !+i v z,r ! separates into

n  z! + em  z,r! with 0   c « I, we obtain an analytical expression for the leading

terms in the expansion of the transmutation kernel. Such results are useful for con-

structing parametrix approximations for the fundamental solution.

�.26!.

Section IV treats the far field in a uniform ocean of finite depth. In a finite

ocean it is well-known that certain modes propagate, whereas the others attenuate.

Hence, it is not surprising that an expression for the far field pattern is obtained which

depends on just the propagating modes, namely

IV

F, r,z;9!;= g e' 'f  z,9!
aW

�.] 8!

In Section III a parabolic approximation to the fundamental singularity  vW! is

derived and this used to obtain an integral representation for the solution in an exterior

region. Such representations are useful for constructing starting fields. We integral

representation is then used to construct a parametrix for the finite, variable index ocean
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It is shown that any propagating solution v x! of the Helmholtz equation

hm � I tv x! l~dx <1

r~ r

1I. Transmutation Theory

In this section we use transmutation theory to investigate the parabolic approxi-

mation

2ik~ + ~ + k-[nz z,r! � 1+ iv z,r!]y = 0 .. cd Bv
�.1!Tir

to the axially symmetric Helmholtz equation [Desa 77]. [Mcda 75], [Tapp 77], [Desa

79].

To simplify expressions we sei q z,r!;= k [n  z,r!-1+iv z,r!], and consider

transmutations between equations of the form

Quilt;= i'�+ q  z,r !iJt � 2ik iIt,, � 2!

and

PQ: = P. +p z,r!i' � 2ik P, �.'3!

and the proper boundary conditions on the ocean surface and bottom is a propagating

Herglotz function. Equations �.25! and �,27! imply, in contrast to the result of

Colton-Monk for R, that any attempt to obtain structure in the target identification

problem must be constrained. For Rt�however, this is seen to be a best possible

theoretical result as F lies in a finite dimensional subspace of L  BZ!. Hence, the tar-

get identification problem for underwater acoustics must be perpetually plagued b>

problems of resolution. These need not be insurmountable providing sufficiently many

modes propagate. Numerical experiments are presently being made to determine how

many these may need to be and will be published in a sequel to the present work.
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74],

As done earlier [Giwo 87a], [Gelev], [Colt 78], [Rund 84] we seek a represen-

tation for B as an integral transformation of the form

z!r zr! ,= $ zr! ,+ JK s,z,r !Q s,r !ds �.4!

By formal differentiation we obtain

Qz!r = qzz + JKzzqds + Kz z,z,r !q  zr ! + � [ K  zz,r ! q zr !]a

h az

+qq+ Jq 'r!K s z'!q s'!ds  z JKs S sr!ds,
A

� JK s,z,r!q, s.r!d= s[q z,r! � p z,r!] +

J[Kzz + q  z,r !K � K] s qs,r !ds+ Kz z,zr'!q z,,z !
h

+ � [K z,z,r!t[t z,r!] � 2ik J Kq  sr! ds3

z A

The last integral may be simplified by using

KJ  s, zr! q  s, r! ds= JK  , , s![zqz+pt  r.s]d s
h h

= $, z,r!K z,z,r! � P, h,r!K h,z,t ! � p z,r!K, z,z,r!

+  z h,r!K ~ h,z,r! + fK>~ s,z,r!   rz!dss
h

By putting these together we obtain the following conditions on K s,z,r!,

i.e, we seek operators B such that BP = QB, [Carr 84], [Carr 74], [Dgrw 87], [Gilb



K�-K�+ [q z,r! � p s,r!]K � 2ik K, = 0, �.5!

� N z,z,t}] = p z,r! � q z,r!
z �.6!

with

�.1!p7  h,r !K  h,z,r ! � K >  h,z,r !$ h,r ! = 0

~!K 1 aK
8 '' 2 ' ' Bz " z,z,t! = � [p z,t! � q z,t!j = �h-z,z,t! �.8!

Otherwise, if K s,z,t! satisfies �.5! and �.8! we may set

K s,z,t! = K s,z,t! � K�h � S,z,t! �.9!

We now consider the special case where p  z,r! only depends on z,

p z,r!:= 77' z!

q z,r!:= n  z! + en  z,r! �,10!

Such instances of q z,r! appear in ocean acoustics where radial effects are seen to be
much smaller than the depth dependent variations. Equation �.5! now takes on the
form

K77 K/7 + en  z,r }K � 2ik K, �.11!

Since e is a small parameter we now try an asymptotic expansion

K z,r,t! = g e K~'  z,r,t!
lW

and for simplicity introduce characteristic coordinates

�.12!

Z+S z -S
, q=2 ' 2

If we require that y7 h,r! = 0 a natural choice is to take $7 h,r! = 0 and
extend p z,r!, q z,r! as even functions of  z-h! then we may And K s,z,t! as a
solution of �.5! satisfying
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We try to obtain to �.17! in the form

<"'  .~.r! = Z, tt]  ,, !  2g !t  	
 l!!' ar'

�.18!

and notice that if we choose Q  ,n,t ! of the form

$ F�n,r! = K~~~  ,0,r! + K~~~�,r!,r! �.19!

K,", 1  , rr!! = J J g, t  t], t!r!+z "   � 2<k !'
o o tm  I!! Br'

�.20!

Hence, the terms to second order in K g,q,r ! are

J[1+m t t+h,r !] dt
0

r ~ ~  � 2ik t!!' t!'
2 Iw  j!
 pre

+ j[[+mt t+h,r!]dr + � J J ge " �ik r!!j

0 2 o o J=o  j!!'

 -2tk t1! j[1+m  t+h,r!]dr + j[1+m  t+h,r !]dt
 I!!' ~r' o o

�.21!

We now show how one may directly compute a fundamental solution to the

equation

2ik~+ ~ = !
ar

�.22!

not only does �.18! satisfy the Goursat conditions, but it satisfies the differential equa-

tion as well. In a similar way we may construct solutions to �.13c!. Writing

![I[[  ,r!,r !:= m ~  +q+k,r !K~ ~  ,r! !

we notice that a solution of �.13c! may be written as
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in the form

s� z g!
S z, ;r,p!:= g  � 1!" n!

~=0  r w!"+'
�,23!

s, =0,

2iks�> + s�= 0,

which suggests we choose

  ! 2gg+i
s� z �  !:=   � 2ik!"

�n+1! t
�.24!

ik ~t-
e  '~! 1 ik z- !

S z- ,r,p! = 1+ � y 1/2,
r-p 2 ' 2 r-p!

�.25!

where yfct,z !:= Je t 'dt is the incomplete gamma function, In axially symmetric
0

coordinates this becomes

ik
exp

S  z,r,e;  ,p,y!
I re'a � pe'~ I

The form of S foHows by considering the power series

~ e fZgs

y z!:= g

which comes about by substituting �.20! into �,19!, From the Legendre duplication

formula for gamma functions we replace the sum in y z! by

Substituting �.19! into �.18! leads to the system

1+'lf 1

2'
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c]ear that f { ! = � y�|;!  + satisfies the nonhomogeneous ordinary4

Wx

dif ferential equation

~ll2
d g I �/2!

whose general solution is given by

g |;! = e< A+~','1/2 i"!

r liZ!

We obtain

n

V z.p! = Z, ~  V.  z!!
nt 2k

�.25!

Tappert  Tapp 70] replaces the parabolic equation

2ik~ + ~ + � ~ + k n  z,r Q!ly = 0
a%

Bl' Qz~ y~

by

2ik~ + ~ + ~ + k rt  z g,y !g = 0
az' ay'

which motivates us to seek a solution of

2ik~+ ~+~ 0, V z,V,0! = V.
az'

by the above method. We obtain

A solution to �.18! satisfying the analytic Cauchy data

tie z,0! = tie, z!

may also be found using the Cauchy Kowolewski theorem by seeking it in the form
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p z,r,Q! = g r"
2k

�.26!

where

I J. Related Differential Equations

We now return to the acoustic Helmholtz equation for an axially symmetric

solution, namely

� 1!

and make a change of dependent variables p = r "u r,z!e' . This leads to the

equation

�-2!

The parabolic approximauon is that l / l «1 and l u/r l «1 which
du Bu 2

fr 2 Br

permits us to approximate �,2! by

�.3!

Using separation of variables the equation �.3! may be written in the form

u r,z! = g a~Z  z! exp  ir k � k !/2k!

where the Z  z! are the eigenfunctions appearing in the Sturm Liouville problem

{D +k n  z!!Z  z! = k 2Z  z!

�.4!

 D = � !,
a

clz

Q2 1 Q2
+

z 2 p2 Q2

~+ � ~+ ~+k2n2 z!p =0, j2

Qr2 r dr Qz2

82u . Bu 2 2 1
� + � + 2ik +  k [n  z!-I] + !u = 0

 !z 2 Br 4r2

3u i32u
2ik + + k2fn2 z! l~u P

Br



The far-6eld solutions to �,1! may be written as [Mcda 75], [Desa 79]

p r,z! = r" g P Z  z!e' �.5!

g z!:= gP Z e
rg re

giving rise to

p r,z! = �, g a Z exp i r-r~! k -k !/2k! �.6!

We shall now try to relate the solutions �.5! and �.6! by means of an integral

transform. To this end we notice that if u r,z! = e ' U then �.2! implies that

� + � +k [n  z!+ � ]U =0,
a'v a'v

ay> Qzz 4r~

and the PE becomes

� + � +k n  z!U=0
aU aU

2 az 2
�.7!

r
Moreover, if we use the rotation and stretching t = ., then �.3! becomes

2ik

Bv Bv
+ + k [n  z!-1]v = 0

ac az~

The transformation v r,z! = V r,z!e returns

av a'v+ � + k2n  z!V =0
at azz

�.8!

If the equations �.1! and �.3! are to satisfy the same boundary conditions, i.e.

Q r,0! = 0, and ~ r,h! = 0
Qh

Bz
�.9!

where Q is taken to be either p or u, then U r,z! and V r,z! also satisfy these

where the Z  z! are the eigensolutions of �.4!. This suggests using a starting field

for the PE �.3! at r = r�
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boundary conditions.

Bragg and Dettman [Brde 68a], garde 68b] have, in a series of papers, investi-

gated mappings between solutions of the equations �,7! and �.8!, which satisfy the

same boundary conditions. In particular, if U r,z! satisfies �.7! and

�.10!U r,,z! = Q z!, U, r~,z! = 0

then this is related to the solution of �.8! with the initial condition

�.11!V r0,z! = Q z!

by

U r,z! = rI�/2!L, ' s" V , z!1
�.12!

On the other hand, if U r,z! is chosen to satisfy the initial conditions

U r,z! = 0, U, r,z! = Q z! �.13!

then the solutions are related by

U r,z! = rI �/2!L, S +V ,z!1 �.14!

In both instances L, ' is the inverse Laplace transform with respect to the s-variable

and its paired variable x is taken to be r2 after integration is performed. These ideas

are useful for constructing the starting field for the PE. We note that if the pressure at

r = r, is given by p r,,z! = p z! then U r~,z! =r~'+p r�z! = r ' p z!; more-

3l ~
jI

over, V r,,z! = e r~" Q z!. It is therefore very easy to associate a particular

Cauchy problem of the type investigated with Bragg and Dettman for the case of the

Helmholtz equation with the PE. Whereas this procedure is of no real use in cornput-

ing the far field it may be possible to approximate the near-field for the HE from the

starting field for the PE.
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Suppose we consider the situation where an object of revolution D about the z-

axis is radiating sound into a channel of depth h. See Figure 1 below

r=r

z
0

Figure 1

where the objects diameter is situated on the z-axis between z0 and z>. A genera-

tor of the object is given by r = f  z! z c [z~,z t].

On [O,z~] u [z>,h] ~ = 0 because of symmetry, and on the surface r = f  z! we
gn

assume p r,z! is given by p f  z!,z! = g z!. As before p r,0! = ~ r,h! = 0, and
3n

z

at the starting 6eld position r = r, we assume that the Sommerfeld condition holds,

�.15!

In terms of our new unknown V  r,z! this last condition remains the same.

The truncated cylinder in Figure 1 is referred to as

Z,":= x:r <r,, 0 z <hI, and the slab 0<z <h

4 r,z;p, ! be the fundamental solution of �.l! in R�', i,e,

is called R�'. Let
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rs S rs a'e
r dr g~> 2' I r-p l

�.16!

with @ r,0;p, ! =  r,h;p,t;! = 0, and
ae

� � <ae = 0 r "2!ae

a.
�.17!

Then if we apply Green's formula to the region Z,"  D we obtain

l tips!  .,ss!-~=' assi .  s 8!ae a  i,~>
aD�B~" ' a ' ' ' av

sr

as

2ssr~ l p rr,O  r,z;rr, ! �  r, % r,� z,;r~, ! d 

= 2nr, J  r,, ! � � iks s � 4 ~ � ikp ds8

0 Bp ap
�.19!

By using �.15!, �.17! and the Schwarz inequality on �.18! we see that the integral is

o�!; hence, we obtain the integral representation

p r *!= f p pQ  r z'p ! � ~d! « p  !~8
BD

�.20!

holds for  r,z!eR� / D.

Indeed, we may use �.20! to construct the starting field at r = r, and if r, is in the

middle range use the modal representation for 4, namely IAhke 77]

!!k

s!s r;'p ~! = � g p�iz!p� S!H ' kss� lr � pl! Jp�ts92ds
4 n~ sp

�.21!

where da p, ! is the surface measure. We notice that BZ," = I u I" u I, and

that the integrals in �.18! vanish on I u I" in lieu of the boundary conditions

imposed there on p and 4. The integral over the lateral surface F', may be rewritten
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~3The difficulty with �,20! is that it requires knowledge of both p and ~ on bD.
Bv

We can avoid this by using a representation of p r,z! in terms of a density function

p p, ! and considering the double-layer representation

P r,z! = J!z P  ! d  rP;P, !dzz P2!,84

aD

which leads to an integral equation for the density in terms of the boundary data for p.

Various authors have used variants on this idea [Cokr 83], [Anck 82], [Urse 73] and

considered combinations of double-and single-layer potentials, i.e.

p r,z! = J � � iz! 4 !z p z!dzz p,z!
aa

�.22!

where q = 0 is an arbitrary real number chosen so that q Re k 2 G. In this instance

we are led to an integral equation of the form

 I+ K+ irl S!p f  z!,z! = 2 t! z!, zc[z�zi] �,23!

where K is the double-layer and S the single-layer operator. If �.20! is the Green's

function for the uniform ocean a parametrix may be obtained from this by using the

transmutation B = I+ K, where K is defined in terms of the kernel K z,s,k! as

2

 Kg! z !:= J K z p,k!P s !ds
0

�.24!

and K z p g! is a solution of [Giwo 86], [Dugw 86b]

K22 = Kss + k [n  z!-l]K = 0 �.25!

K  z, + z ! = � k  n  z ! � 1!z z

2

The parametrix is given by



- 16-

and its use in �.21! instead of 4 leads to an integral equation of the same kind as

�.23!.

IV, The Fa» Field

We consider first the case of a uniform, infinite ocean, In this instance, follow-

ing Tappert [Tapp 77j we know that locally

e r,z,p, ! - ly »-p,z g!H,'  k I»-p I!�

satisfies the parabolic equation

' I'I ~he~e

2ik ~+~ =0
8» Qz2

�.1!

Using a Gaussian starting field it may be shown using Fourier transforms [Tapp 77!

that

-114
1

1+ exp
2k 2 » p
 2 r-p! �+ !2 1

2k 2 » p


+ � � � tan   I r � p Ik !
1

4 2
x exp

ikx
P exp

2 I » � p I
+ ik

2� -p!

This suggests approximating the R - Green's function by

4 r,z,p,t;! � P  r,z,p,t;!:= eat lr-p
4x Ir-p I 21r-p I

 z -~i'
2 r-p!' �.3!
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On the lateral side 1, the normal derivative is

ap ap
= �  r,z, p,t,!

Bv 8p

! ~ik  z � ! ~ z � !
IX � y I 2lx � y I Ix � y I

The integral I~ may be seen to then take the general form, where we allow f to also

vary with 8,

~i z � !z
exp ik lx � y I z z

2x -y

Ix � y I

From the expression

1  z- ! 2 2  z- !P r,z,p, !e ' �,, exp ik lx � y I-r + ik
4rtIx - y I Ix � y I Ix � y I

we obtain by replacing p/r = m, Ilk!l < 1 a COnvergent TaylOr SerieS

z- 'P

Pe is 2p�-2 z! cos ~+0! !'
4xp l-2' cos 8+!+cL! !"

< < 2pk�-2co cos B-0!+A@2!

f, p,tt!! + g f� p,g,z- !OP+',  p,P! ~ aZ
8-0

Hence, the integral lt may be evaluated using terrnwise integration to obtain a power

apseries in pi». Likewise, we may expand as
Bvy

dP e'~ zzzz

 f, p,e! + g f. p,8,z- !» "!
gv r

f
Pzz

~ < � !
2fx � y I

do y!
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Since = 0�/r ! on I u I " we conclude f,  p,tt! = 0 on I v IaF o h

summarize the above by the following formula

jar F� z,g,k !
p y,z,9! = F, 8,k!+ g

y yf1
�.9!

The expression �.9! as it is a solution to the PE gives rise to the following

recursion system for the coefficients F�,

i92F $2F
k F

az2 ' az2
�.10!

g2 F�+2
Bz

= 2 k  n+3I2!F�~! ��
882

We now use the modal expansion to investigate the far field,

- 4. z!tI.  !
4 y,z,p,g! = g H  Ka� I ye' � pe' I!

no ill. II
�.11!

a�= [1+ a+1/2! /  ! j +, and where we have indicated x = ye', y = pe'~.2 -i'

kh

i xk �0 Ig> II2

Using �.12'! for P y,z,p, ! in �,6! yields

Q� z �� e,!pI ...e! = I J g " ", p p.',.eI
0 0

Equation �.9! is a PE far field approximation for extremely high f - number in R,

that is when the focussed beam does not see the channel walls. It is really not valid

when the effects of the ocean surface and bottom must be considered,
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V. The Projection Theorem

From the last section, for large range one has

g e' 'f~ z,a! = r'+ J g " " HI'I ka� lre'e pe'-e l!dzz v!,;kQ, - 3Q v + tI!  z!e  I! t8
=o ac! ~"y ~~ llew II

� l!

where a, > a> > a~ > > 0 are the eigenvalues associated with propagating

modes. Moreover, we may approximate the terms

H ' kg Ire' -pe'~I! = Ire' -pe'~l + ezp n
ink

=�+icos 8+!!, e ~ ~; �.2!
2r i ttk

hence

e- 2 'ag e "'f  z,8! =
a=0 ' ~k ao +y ~=a III� II

e
ita� r-p cos 8-p!!

d a yj

aa ~! ", t- ~ .» p. z!<.  !
d zz IP!,

iX  BD I!vv El III. II
�.3!

~here x2, y2 are the z- dimensional vectors x2 ..� �  x>,xz!, y2.- �  y>,y2!, and

Ix2I = l. Differentiating j - times both sides of �,3! w.r.t. the range yields the sys-

tem of equations

H

g  ika�!J e ' f~ z,8!

y
Bu  'vj

i7tk aO
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where

J g z'8!z r xz yz z Q d+ x!2

irk ~
�.12!

The vector function V y! or its representation as a sum of modes

t tt�  !v y!:= g Jg z,8!8� z!x' ' "z~dzz x! =: g v� y!,
~=0 litt! ll az, ggO

�.13!

a' a'
tion may be seen directly. If h,2 .� � � + �, then

 jz 2 Qz 2

h>v� y! = � k a�!!x>It v� y! = � k2a�v� y!

Furthermore, since the functions  t!� z! satisfy

Q� z! = k  a�-l!$�

it follows that Av� y! = � k v� y!,

As the depth of the ocean h is permitted to increase more terms are permitted

in the sum �.1!. In the limit N m ~ and the system �.5! would be replaced by an

infinite number of equations

VW  r!F z,8! = ~ V D  r! J z r xz,vz,z, v! dry y!2 Bu !

l Kk gg BVy

~here V�:= lim VJv, D  r!:= lim D> r! are x matrices and F, y are
W~

vectors in I>. Since V, and D  r! exist in I> we have formally that

F z,8! = J z r x,y! dzz y!2 t!u !

i Kk gg Bvy
�.1<!

where F and y may be thought of now as functions in L  BK, x BD! and, hence,

we shall drop the vector notation in what follows, For finite oceans not all of the

are to be called propagating Herglotz function. The modes v� y! are to be called

Herglotz Fnoda  solutions. That the v� y! are actually solutions of Helmholtz's equa-
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above modes propagate; however, for a deep ocean �.10! will be a good approxima-

tion to the far field. Moreover, we also obtain

1 g  z, I!F  z, !!d zz x! = I ~ x  !  d a !!
BZ, 3D +y

�.15!

where

 ta<x v>

'"k az, ~~ III ll'
�.16}

with 0   h   ~, and I x> I = 1.

We shall call such v y! that

lirn � I v  x! I dx
1 2

r~ r
P

�.17!

as generalized Herglotz wave functions, and g z,8! is called the cylindrical Herglotz

kernel.

In what follows we shall consider the far fields which occur from the scattering

of the incident wave

o z! 'kx ax' x!;= � e' *'
4' z !

�.18!

off of the soft obstacle D. We denote these far fields as F z,8;k;a2!, The point

�,0,z,! is taken to lie within D. Essentially we wish to find a solution u x! of the

Helmholtz's equation in Ri3 l D which vanishes on 3D and such that

u  x! = u' x! + u' x!, where u' x! is the scattered solution.

lim � 1 iv x! I dx <1 2

r~
�. 19!

Theorem �.I! Any propagating solution of the Helmholtz equation deftned in all of

Ri,, satisjjing3
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and the boundary conditions ~, v,~ �� 0 may be represented in theck

Bz p

form �,12! for some g  z,8! c L  BZ>!, Conversely, any solution in the form �.12!

for some g  z,8! e L  BZ t! satisfies �.19!.

Proof. We first prove the direct part. Separation of variables leads to the following

expansion for v x! defined in R>3..

v x2 2! = g g  c J  ka�r! + d Y� ka�r!e' Q� z!
nW m=~

As Y  r! is singular at rW this implies

D =0,  n&,1,2 !,  mW,k 1,+2, !. Hence,

v x>,z! = g g c J� ka�r!e Q� z!
nW m~

�.20!

r

IIQ�II2 1 g g Ic I' IJ  ka�,!l p dp<
On&m~

pure imaginary. Using

If! ll

1
we realize that since J~ ka�r! m ~ as r m ~ that

Vr
c = 0 for

n > JV,  m=0, + 1, + 2, !. From this �.20! reduces to the propagating wave

form

Pf

v x>,z! = g g c J  ka�r!e' P� z! �.21!
a=0 m=-

The asytnptotic condition �.19! now implies

2kh � n
Note that for any integer n ! N with N:=

2lt

1/
�n+1! tt

a�= 1 is a
4k2h 2
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=O 0  x,i=t Ill>�ll

where r = I x2 l. Using the Jacobi-Anger expansion one has

 M! g   !kkk J  + !e kkkk  ~!

which permits us to rewrite V xz,z! as

h 22k

V zzzz! = g r. $� z!e' J~ ka�r! [ J J e ~
o 0 III.II'

N4   !g   ,tt!!~ 4 d  ]

If g   ,P! is defined to be the function given by the series

�.22!

� 23!

then v x2,z! =- V x2,z!. Moreover, since

h 22k

J Jlg  ,p!I d dkt=2k g g Ic
0 0 ~Srt �~

h ~xk

2 K2
�.24!

we may show that g   ,Q!e L  BZ~! if �.23! is bounded, From �.17! we have

Ic lz  � JIJ  ka�p! I pdp! <
eke kkk=~ r 0

Using the asymptotic expansion for large argument of the Bessel function we have

� JIJ� ka�p!l dp = + 0  � !1 1 1

T p ka�rt r

To show v x2,z! may be written in the form �.16! we rewrite �.16! in the form
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 n~ 1,, n!,  mW X 1, 5 2 !. ~is implies p g I c~ I
@=0 rn=~

To prove the converse part we assume g eL  BZ<!. From this we have

' "'*'-'~a ee

az, ~=0 Il t!, II
IV y! I =

fl 9 " " ''""dd9
i zk n=0 az> II tzg lt

J  g  z,9> i zdzd 9 f
~ az, az, IIQ.II

� C >!llg II/  Jz!

Consequently �.17! is valid. The function F y! was shown to satisfy the Helmholtz

equation. Obviously it satisfies the boundary conditions.

It follows from the above Theorem and �.11! if k2 is a Dirichlet eigenvalue for the

Laplacian in D and v x! a corresponding eigenfunction then

J F z,9;k;u !g z,9!dz d9 = 0
az,

�.25!

Moreover, if k is not a Dirichlet eigenvalue and v x! the solution of the boundary

value problem

v+k v=0 in D

�,26!

 x! = � 4 x,x'! on BD

with x';= �,0, 0!cD, then

r oti,x lda s'I = u~'' x'! = 13   y!
ar +'!

�.27!
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The equalities �.20!, �.22! suggest that we follow Colton and Monk [Corno 85],

[Corno 87] and define the set F of far field patterns conesponding to a fixed domain

D and incident fields of the form �.18!

F:=  F  z,e;k;x !: 1 a> I = I } �.28!

and the set S

S:=  F  z,e;k;az! � F  z,e;k,a>!: l az f = 1} �.29!

L  8Z~! = span F 4 span  g } 0 F
whereas, the latter case becomes

�.30!

L  elZ>! =span S 4 span  g } . S

This means that as only a finite number of modes propagate any attempt to regain

structure in the target identification problem is constrained by the fact that

dim F! < ~,
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