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I. Introduction

In Section I we continue with our use of transmutation theory [Dugw 86a,b],
[Dugw 87], (Giwo 86], {Giwo 87a,b] to show how these ideas may be implemented to

use with the parallel approximations to the Helmholiz equation for a stratified media

[Tapp 77]
2 2 2
-g—%+%—g%f 12 ge€+g‘z+k2[n2(z,r)+iv(z,r)]p=0 , (1.1)
r r r4
namely
2;k%‘f-+g—i“’;+% ?—;‘211% Unz r)-14iv(z,r)y=0 . (1.2)

In the particular case where g{z,r):= n2(z S V() separates into
nz(z) + Emz(z ,/) with ( < € « 1, we obtain an analytical expression for the leading
terms in the expansion of the transmutation kernel. Such results are useful for con-

structing parametrix approximations for the fundamental solution.

In Section 11 a parabolic approximation to the fundamental singularity (v=0) is
derived and this used to obtain an integral representation for the solution in an exterior
region. Such representations are useful for constructing starting fields. The integral
representation is then used to construct a parametrix for the finite, vartable index ocean

(3.26).

Section IV treats the far field in a uniform ocean of finite depth. In a finite
ocean it is well-known that certain modes propagate, whereas the others atienuate.
Hence, it is not surprising that an expression for the far field pattern is obtained which
depends on just the propagating modes, namely

N a
Forz0):=Y €™ f,,(2.8). (4.18)
n=0



It is shown that any propagating solution v(x) of the Helmholtz equation

Tm frveoitdx < e
r

F =ty Z,

and the proper boundary conditions on the ocean surface and bottom 1S a propagaring
Herglotz function. Equations (5.25) and (5.27) imply, in contrast to the result of
Colton-Monk for R, that any attempt to obtain structure in the target identification
problem must be constrained. For R7, however, this is seen to be a best possible
theoretical result as ¥ lies in a finite dimensional subspace of L%(9Z). Hence, the tar-
get identification problem for underwater acoustics must be perpetually plagued by
problems of resolution. These need not be insurmountable providing sufficiently many
modes propagate. Numerical experiments are presently being made to determine how

many these may need to be and will be published in a sequel to the present work.
I1. Transmutation Theory

In this section we use transmutation theory to investigate the parabolic approxi-

mation

2k 2L 4 Ea's + ka2, r) -1 +ivE Dy =0. .1
ar 822
to the axially symmetric Helmholtz equation {Desa 77], [Mcda 75], [Tapp 77]. [Desa
79].

To simplify expressions we set g (z,r) := k2[n%(z,r)=1+iv(z,r)], and consider

transmutations between equations of the form

Qv =y, +qCr)v-2iky, , (2.2)
and

PO = 0. +p(zr)y - 2k 0, 2.3)



.4.

i.e. we seck operators B such that BP = QB, [Carr 84}, [Carr 74], [Dgrw 87], [Gilb
74].

As done earlier [Giwo 87a), [Gelev], [Colt 78], [Rund 84] we seek a represen-

tation for B as an integral transformation of the form
z
Wiz,r) = ®z.r) + [K(s,z2,r)0(s,r)ds . (2.4)
h
By formal differentiation we obtain

QW = ¢zz + JKZZQdS + K2(2 W2 F )¢(Z ,.?') + %[K (Z Z 5 )¢(Z F )]

h
2z z

+q0+ g2 K (s.2,7)00 7 )ds — &, - [Ka0(s.r)ds
h h

- IK(s,z X (sr)ds =[qgz,r)~-pz,r)]+

h
[Kan + q(zr)K = K3)0(s r)ds + Ky(z,2,0)0(z 1)
h

z
+ %[K(Z.z.r)cb(z.r)] - 2ik qua,(s,r)ds ,
h
The last integral may be simplified by using
z H
JK(s,2,0)0,(s.r)ds = [K (s.,2,0)[0+p (s 7 )0]ds
h h
=¢,(zr)Kz.z2,r)-Q,hr)Kh,zr)—-pz,r)K,(z,2,r)

F4
+ oh K thzr)+ IK”(s,z.r)q)(s.r)ds .
h

By putting these together we obtain the following conditions on K (s.,z.r),



KKy +1q2.0) —pG)K -2k K, =0 2.5)
a%[K(z,z.t)]:p(z.r)—q(z,r) . (2.6)

with
O, (hK (hyzr) =K (h2r)hr)=0 . 2.7

If we require that y,(h,r) =0 a natural choice is to take ¢,(A,r) =0 and
extend p(z,r), q(z,r) as even functions of (z —h) then we may find K(s5,z,7) as a
solution of (2.5) satisfying

K

y (Qh-z,z.1) . (2.8)

ok 1 - =
—a-z—(z,z,t) = Z[P(Z,f) q(z.1)]

Otherwise, if K(s,z.r) satisfies (2.5) and (2.8) we may set
Kis,20)=K(s,z,t) ~KRQh-s,21) . 2.9
We now consider the special case where p{z,r) only depends on :,

p(z.r)=n¥z) ,
and

q(z.r) =n%z) + emir) . (2.10)

Such instances of ¢ (z,7) appear in ocean acoustics where radial effects are seen to be
much smaller than the depth dependent variations. Equation (2.5) now takes on the

form
K, - K, +em?zr)K - 2ik K, . (2.11)

Since € is a small parameter we now Iry an asymptotic expansion

Kizra)=Y kD rn (2.12)
=0

and for simplicity introduce characteristic coordinates

= 23 =2



We obtain the system

KO -2k kO |, KOYEO0r)=KO0mr) =0,

KWEOr) =

K(l)(o’n,r) = % I[l—m 2(f+h T)de
0

K I+2) _ 2k Ks(!+2) - mZ(Z ,V)K(“'U ,

We seek solutions of these equations by an iterative procedure, namely

with

KOEnr) = K9OE0) + KO0

ng
KU Enr) = 2ik I_[
00

Ké},) - 2ik KV =m2(z, k@ |

Mlt—-‘
e L Aad

KSDEO0N=K"D0nr)y=0 .

KWVEn,ry= i KDEn)
n=0

3K +D

r

(1=-m2(r+h F)H]dr

Enridé dn .

(2.13a)

(2.13b)

(2.13¢c)

(2.14)

(2.15)

(2.16)

Since K§{¥(s,z2,r)=0 it follows that K,O%s,z,r)=0 for all n and, hence,

KOs 2 ry = 0. Equaton (2.13b) now becomes

-

aK(I) oK@

Xon ~ o =0

d
KDE0.r) = % [(1-m?(t+h r))d
o

n
KYonr = J[l—mz(r-!-h.r)]dr
0

to | —

(2.17)



We try to obtain to (2.17) in the form

ai

() _ o (-2ikEn)
K (aon sr) - I§O (11)2 ari ¢(§9n ;r) (218)
and notice that if we choose ®(&,n,1) of the form
#E.n,r)=KDEOr) + KDOM,r) (2.19)

not only does (2.18) satisfy the Goursat conditions, but it satisfies the differential equa-

tion as well. In a similar way we may construct solutions to (2.13¢). Writing
YEMNT) = m¥ Gk rKOER)

we notice that a solution of (2.13c) may be written as

_ En “w (A i
KU Enr) =J’J’ T (=2ik &)’ o

0o Unt ot viEnr) . (2.20)

Hence, the terms to second order in K(¢.n.r) are

KEn,r)

- ;
(—2(:::' fzn) jj [(14m+h r))dr
=0 ! 0

H
wfm
M3

n 2 80 ] ‘
+ ftomXerh e[+ & [ [ 2ikEny
v} 00

o) 3 2k tn) &

T 12T anr o

§ n
j[1+m2(r+h )lde + j[1+m2(z+h r)dt
0 0
(2.21)

We now show how one may directly compute a fundamental solution to the

equation

o o e

Y L g (2.22)
af 822



in the form
o 5, (z7-%)
Sz Erp) = X (-D'nl—— . (2.23)
A r-p)*
Substituting (2.19) into (2.18) leads to the system
s, =0,
2iks,_y+s, =0,
which suggests we choose
By = iy 2R - 24
$a(z-8) = (-2ik) @n+D)! (2.24)
and
B @-gf
e2 » | 1 ik (2 =0)?
- = ——— {1+= ¥y {1/ 22
S@-Lr.p) = 2N ey | (2.25)

z

where ¥(a,z) = Ie"‘r“‘ldt is the incomplete gamma function. In axially symmetric
0

coordinates this becomes

exp [i_g____(z— )

2 |r¢£9—p€£e| ] [1+Y[l l'k(z_;)2 ]] |

Sz.r.8,0,p.0) =

lre'®—pe’®i 2" 2irei®-pei®|
The form of § follows by considering the power series

- nlz"
V@)= 2 o

which comes about by substituting (2.20) into (2.19). From the Legendre duplication

formula for gamma functions we replace the sum in (z) by

_ Vi = |2 | 1
w‘)_TEO [4] T(n+3/2)



It is clear that f({{)= %w@c,);-m satisfies the nonhomogeneous ordinary
T

differential equation

o o n
dl R

whose general solution is given by

8(C)=e§[A+M] :

I{1/2)

A solution to (2.18) satisfying the analytic Cauchy data
W(z,0) = y,(z)

may also be found using the Cauchy Kowolewski theorem by seeking it in the form

Wz ,p) = )3 vy, ()" .

n=0
We obtain
eor=5 L2l 45 oy 2.25)
‘l’ ’p ot ﬂ.! 2k dzz" WG - >

Tappert [Tapp 70] replaces the parabolic equation

Loy Oy 19N 2 _
2ik > + 52 + 17 g2 +kn“(z,rd)y =0

2z‘ki‘1’— + Py + Py + k22 yrv=0,
ar azz ayz

which motivates us to seek a solution of

2 2
Y L OV Y
or  9z2 gyl

by the above method. We obtain

y(z,y,0) = vy,
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. n
N ver =Y r" [-2‘?] %A" v, (2.26)
n=0 :
where |
? 1 &
At e —
oz p2 2

Hi. Related Differential Equations

We now return to the acoustic Helmholtz equation for an axially symmetric

solution, namely

p 13,3 22, -
ar2+f ar+azz+kn(z)p 0, (3.1)

and make a change of dependent variables p = r~Y2u(r,z)e™. This leads 10 the

equation
P B g By G 2n2e)1] + g = 0 (32)
or? 922 or 4r? ' -
. . %u , du 2 .
The parabolic approximation is that | ? / > | @1 and | u/r* |1 « 1 which
r r

permits us to approximate (3.2) by

L du . Ju 2% 2
2ik o + 5:5 +kn“(z)=-1lu =0 . (3.3)

Using separation of variables the equation (3.3) may be written in the form

u(rz) =Y ,Z,(z) exp (ir (k2—k2)/2k)

where the Z, (z) are the eigenfunctions appearing in the Sturm Liouville problem

3
D ==,
( =)
(D%+k2n Y202, (2) = k22, (2)
(3.4)
2,0 =2Z,(h)=0.



-11-
The far-field solutions to (3.1) may be written as [Mcda 75}, [Desa 79]

pr.a)=rV2Y B, Zn(2)e™ (3.5)

where the Z,_(z) are the eigensolutions of (3.4). This suggests using a starting field

for the PE (3.3)at r =r,,

1 k7
¢(Z) = 172 Z Bmzmelkh ¢ ’
T, m
giving rise to
p(r.z)= m E O Zy €xpli (r=r,)(k,2k?)12k) . (3.6)
We shall now try to relate the solutions (3.5) and (3.6) by means of an integral

transform. To this end we notice that if u(r z) = e F U then (3.2) implies that

2
U LBV L iy 4 —]U 0.
ar az
and the PE becomes
2U L 2y =0 3.7
8r az

Moreover, if we use the rotation and stretching ¢ = ﬁ, then (3.3) becomes

— + — + kYn%(z)-1]v =0

The transformation v{(.,z2) =V (1,2 )e""’ Teturns

E)V+

2,2
e +k ) =0 . (3.8)

If the equations (3.1) and (3.3) are to satisfy the same boundary conditions, i.e.
or,0=0, and %(r,h) =0 , (3.9)

where ¢ is taken to be either p or u, then U{r,z) and V(r,z) also satisfy these
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boundary conditions.

Bragg and Detmman [Brde 68a), [Brde 68b] have, in a series of papers, invest-
gated mappings between solutions of the equations (3.7) and (3.8), which satisfy the

same boundary conditions. In particular, if U(r,z) satisfies (3.7) and
Ulro.z2)=0(z) , U(r,z)=0 (3.10)
then this is related to the solution of (3.8) with the inidal condition

V(,2)=8z) , (3.11)
by

U(r.z)=rT{12)L]! {s“%/(% , z)} : (3.12)

t—r?

On the other hand, if U (r,z) is chosen to satisfy the initial conditions
Uy 2)=0 , U,(ry2) = 6G) . (3.13)

then the solutions are related by

U(rz) = rT(2)L;" {S"I’ZV(%,Z)} ‘ (3.14)

T—r?

In both instances L;' is the inverse Laplace transform with respect to the s-variable
and its paired variable t is taken to be r? after integration is performed. These ideas
are useful for constructing the starting field for the PE. We note that if the pressure at

r=r, is given by p(r,.2)=0(z) then U(r,,2) =rt2p(r,,z)=r}%(z); more-

3
-2,
over, V(r,.2)=e * r}(z). It is therefore very easy to associate a particular

Cauchy problem of the type investigated with Bragg and Dettman for the case of the
Helmholtz equation with the PE. Whereas this procedure is of no real use in comput-
ing the far field it may be possible to approximate the near-field for the HE from the

starting field for the PE.
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Suppose we consider the situation where an object of revolution D about the z-

axis is radiating sound into a channel of depth £. See Figure 1 below

r r=r
0 o \’r
z r = f(z)
(o] r
Pl "
z
% %
z; D
z=h ch
4
Figure 1

where the objects diameter is situated on the z-axis between z, and z;. A genera-

tor of the objectis given by r = f(2) z € [z,.24].

On [0,2,] w [2,,k] —g% = 0 because of symmetry, and on the surface 7 = f(z) we

assume p(r,z) is given by p(f(z),2) =¢(z). As before p(r,0) = %%(r h)=0, and
at the starting field positdon r = r,, we assume that the Sommerfeld condition holds,

e,

DL = o—
L~ ikp = 0(—) . (3.15)

In terms of our new unknown V(r,z) this last condition remains the same.

The truncated cylinder in Figure 1 is referred to as
Z} =(x:r<r, ,0<z<h), and the slab O<z<h is called R, Let

®(r,z;p,5) be the fundamental solution of (3.1) in R}, i.e.
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32¢ l a_d)- a_(b 2.2 (F— )8(2- ) 16
Tt o + 2 + kin% )b = 277 —p] , (3.16)
with @ 0:p.8) = S2(r hip) =0, and
9 _ ikd =001 | (3.17)
or

Then if we apply Green's formula to the region Z,’: / D we obtain

p(rz)= {D(p C)—(r z;p.0) - —ﬂ&;—Q}dG(P o . (3.18)

aD uBZf

where da(p) is the surface measure. We notice that 92, =T° U T* U I, and
that the integrals in (3.18) vanish on I UT* in lieu of the boundary conditions

imposed there on p and @. The integral over the lateral surface [, may be rewritten

as
h a¢
2nr, J [p (ro,?;) (r 237, .0) — —(ro L)YO(r z;r, mC)]dC
’ oD 9
= 2nr, (j) {p(ra 0 [’é’;’ - k|- ["Eap - lkp]ds (3.19)

By using (3.15), (3.17) and the Schwarz inequality on (3.18) we see that the integral is

0(1); hence, we obtain the integral representation

p(r.z)= j {P(P C)'"'“(f' Zip8) - —E-(:[)}do@ O, (3.20)
holds for (r,z)eR}/D.

Indeed, we may use (3.20) to construct the starting field at r =r, and if r, isin the
middle range use the modal representation for ©®, namely {Ahke 77]

o n
Or 2:p.0) -% Y 0,000, (OH Vtka, Ir-pl) [ s)ds . (3.21)
n=0 0
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The difficulty with (3.20) is that it requires knowledge of both p and g% on oD.

We can avoid this by using a representation of p(r.z) in terms of a density function

w(p,t) and considering the double-layer representation
pr.z)= | u(p‘i)sﬂ(r 2:p,0de(p)
ap v

which leads to an integral equation for the density in terms of the boundary data for p.
Various authors have used variants on this idea [Cokr 83], [Anck 82], [Urse 73] and

considered combinations of double-and single-layer potentials, i.e.

p(p,z)do(p,z) (3.22)

0
prz)=[|5--in®
45

where 1 =0 is an arbitrary real number chosen so that 1 Re ¥ 2 0. In this instance

we are led to an integral equation of the form
A+ K +in S (2),2) = 20(z) , z€[z,.2] - (3.23)

where K is the double-layer and S the single-layer operator. If (3.20) is the Green’s
function for the uniform ocean a parametrix may be obtained from this by using the

transmutation B = I+ K, where K is defined in terms of the kemel K (z,5,k) as

(K)(z) = [ K (2.5 k)0(s ds (3.24)
0

and K(z,s5,k) 1is a solution of {Giwo 86], [Dugw 86b]

K,, =K, + k*}n*z)~11K =0 , (3.25)

K. +2)= % Kn2z)-1) |

The parametrix is given by

HVka, tr—p1)

@(r.z;p,0) =% i ¢, (0BG, )z) o I . (3.26)
n=0}

n
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and its use in (3.21) instead of & leads to an integral equation of the same kind as

(3.23).
IV, The Far Field

We consider first the case of a uniform, infinite ocean. In this instance, follow-

ing Tappert [Tapp 77] we know that locally

J_2 .
O 2,p.5) ~ W(r—-p.z-DH Kk Ir—p 1) ~ Tk r—pl we 7Pl where Y

satisfies the parabolic equation
o ¥,V _g (.1
r 3z2

Using a Gaussian starting field it may be shown using Fourier wransforms [Tapp 77}

that
-1/4
ikn 1 (z-£)?
=Po 1+ [
V7P N2 [ Zk%”ﬂﬂz] " 2r-p)? (I+———)
2k¥(r —p)?
: 2
X exp ik (z L) + % —% tan~*(1r—plk)
1
2lr-pt |14—m———
i 2k2(r-p)2]
_ ik @, @b
Po ___ZIr—pI ex [ 2(r—p)2 + ik ) | -

This suggests approximating the R*- Green’s function by

_ — 1 ik lr-pl (z ‘92
O(rzp0) - P(r.z.p0) = mdlnir-pl e [l + 3ir—p]

_ -
X & Ar-p)* . (4.3)
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A straight-forward computation yields

2 2., _ryd
AP + k7P =P{3"‘(Z‘Q 1|40 -3(z—§)2]
21r——pl3 Ir~—p|‘1 4

“4-

4
== 2ik -0 + —‘—9)—}— o——) (4.4)

lr—p| —p!’ lr=pt*

as lr-pl — eo. Similarly, we get

. 3 _ryd
O _upoplo 1 B B o 1 . @45)
or Tl 2R | (r-p? r=p2

This suggests that if we replace @ by its PE approximation P in the Green’s represen-

tation (3.19), namely

- oP _9%
p(r 2)= B‘L{F(p!C) v {r.z ,p’C) v P}dU(PaC) ’ (4'6)

that the result is valid to within an order of magnitude. Moreover, (4.6) satisfies the

radiation condigon.

If we consider (4.6) in R} and use the fact that @ and p satisfy the same

boundary conditions on z = 0,2 then for r > r,

pirz)~ | {p( C)— - ja%P}dc(p 9 (4.7)
r'o
Let
I :=IJ p(p,C)%gdG(p,C) \ | (4.8)
and

[2 = rj _S%P(r ¥4 tp*C) dG(P-C)



-18 -

On the lateral side T', the normal derivative is

oP _ oP

F Y '55'(!',2 p:.0)
P S B fk(f:—Qf N (3—C)f
X -y | 2lx =yl Ix -yl
The integral /; may be seen to then take the general form, where we allow f to also
vary with 8,
P TEIR Ay _\2
exp ik Ix-y | ~ 1(2’ c’), - (z, C).
2x —y 2ix -y
11:=rj f — do(y) .
i Ix -yl

From the expression

. , , 2 2
P(rzplle™™ = - cxp[iklx —-yi-r +ik (z, o _ D ]

4nix ~y | IX -yl X -y

we obtain by replacing p/r = @, l®l <1 a convergent Taylor series

ik pi(1-26 cos(B-OM+ ) 2-1] ! ik ez - Y
peitr e kPl cos(B=C+ ) ?=1] e[ To2m cos(9—¢}+m2)m]
4np(1-20 cos(@—¢)+w?)!?

—w?(z =LY
x ¢ W(1-20 cos(B~o)w?)

=folpdlo + i falpdz-00™ | (po) € 9Zp .
n=(

Hence, the integral /; may be evaluated using termwise integration to obtain a power

senes in p/r. Likewise, we may expand 9P as

ov

Y

oP ek - 7
— == (f,(p.8)+ Y f.(pBz-0)r ™) .
av} r a=1
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Since -%l =0(1/r3) on I° UT* we conclude f,(P®)=0 on I UT* We
y

summarize the above by the following formula

e Fo(z,8,4)
p(r,zz,08) = ——JF (8,k) + E _— (4.9)

n=1 rt

Equation (4.9) is a PE far field approximation for extremely high f- number in R3,
that is when the focussed beam does not see the channel walls. It is really not valid

when the effects of the ocean surface and bottomn must be considered.

The expression (4.9) as it is a solution to the PE gives rise to the following

recursion system for the coefficients F,,

9°F, o &F, i F
=v, =1 ’
922 82 °
4.10)
Y2 “ 32
2 = 2ik (RA3I2F g ~ —
322 " ae?
We now use the modal expansion to investigate the far field,
= ¢,(2),(C) - -
O(r,z.pl) = Z—Ez—c—- H,(Ka, lre'® - pe'®l) , 4.11)
n=0 o,
L, = [1+(n +1/2)2/(k—1)2]'“2. and where we have indicated x =re'® | y =pe®

Then

2 . . o (Z)¢H(C) B it
D _ iB_. it 172 n nl"a_lre pe'®|
(r,z,p,0) ‘\’————mk lre'®—pe'®| z: — € (4.12)
n=0_ H¢ Il
Using (4.12) for P(r,z2,p.) in (4.6) yields

""/_ 0, (236, o)
i g ik o U (P>

-'(]'




=20 -

R 3 |e*=R ap 1"k
-3l e o

where R := lre!®—pei®i. Let us consider the individual integrals of the type

A 2n ika R 46 df
.= [ poLnRL ”"—-—-] , (4.14)
00 op aP R |lo=,
h ; do di
- f % 13p (p.L.o) 4.15)
00 RV o o,

We consider integrals of the type /J,, first, ie. integrals of the form

h2n
II I3 f(¢§)d¢ d{, and note that if ® :=r,/r, then

eiica.(R—r) _ me"" o[1-20 cospat)™-1le
R r,[1-2 cosypw?)
=¥ oo™ |
m=0

where ¥Y=9 - ¢. A similar analysis holds for the integrals of the form /,,; hence,

we obtain an expression of the form

;ta‘r = fnm(zve)

r n=0 m=0 r
- Fo(r.z,8) N oo,
="_l_ 2 ——— , Fo(rz0):= > eh' Fam(2.8) ((4.17)
rlf). 0 rm =
The term
i ika, r
F,(rz9):=Y ™ f,,,0 (4.18)
n=0

plays the role of a far-field pattern,
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V. The Projection Theorem

From the last section, for large range one has

%Oeika.rf’w(z,e)=r1f2‘l’ ou (y) i 0, (2)9,(0)

3 H(ka, Ire'8—pe®)d o(y) ,
ab avy n=0) "¢n"

5.1}

where a, >a;> ++- >ay_; 20 are the eigenvalues associated with propagating

modes. Moreover, we may approximate the terms

HY%ka, re®-pei®l) = ‘\} —ik lre ®-pei®|-112 ¢4 Ire’®-pe’ol
i

s(1+-§?cos(e—¢)) ‘\/ ﬁ gihar(r=p cos®0) . (59

hence

g hanr ,,/ au(x) N 9, (2)9,(0) ‘
E T @ =Nk g ov, 10, I

n=0

e&an(r-ﬁl COS(B_P)) dc(y)

_ A { Ju(y) N - 1y.3, B, (2)0, (0)
¢ —————— do(9),
J m li9, 112

(5.3)

where X, ,y, are the z- dimensional vectors X, := (x|, x;).¥;:=(y;.y,). and
Ix41 = 1. Dafferentiating j- times both sides of (5.3) w.r.t. the range yields the sys-

temn of equations

N .
Y Gka, Y e f..(2.0)

n=0
_ 2 duty) X o iar-ika, <. vy > ,
‘mG f S X (ka,Y e 2R doy) , (5.4)

oD y na=D
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(j =012, - -+, N-1), which in matrix form may be written as

VDY (PG = \ =2 VD, ) | Eyixy 3,20 dow) . 655)
aD

y

where Vi is the (N+1) x (N+1) Vandermonde matrix of constant coefficients

1 l aasar 1
ka tka ka
AN = ika, I IKap , (5.6)

Dy(r) is the (N+1) x (N +1) diagonal matrix

eika,r 2 0 ..... 0
ikayr
DN(I‘) = 0 € 0 0 * (5'7)
0 0 Jikav

and F .,y are the vectors whose ransposes are given by

F(Z,e) = [fao(zve) ’ fl(}(z!e): ce v.fNo(zse)] B (58)
and
ka, < X3, %3 > ika, < s 9n(230,(5)
Vg ¥ 2 = [ @, e, eton x> 20 E)

10, If2 li 112

(5.9
with x,! = 1.

Since Ay! and Dyl(r) exist multiplication on the left by these matrices

leads to the following vector equation for the components of the far field.

_.‘/ 2 ou(y) ,
F(z 8) =\ == a{) v, wix; ., ¥, , 2.0 do(y) (5.10)

Let Z:={(rz20):r=1,0<2<h ,0<0<2n} and g(z,8) € L,(dZ,) then

multiply (5.6) by g(z,8) and integrating over dZ; leads to

[ FG8)g(z.8)d: dB = | 9—5—‘-?‘#)- Vi) doty) (5.11)

a7 i oV
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where

2
V@) = \};;,; aLg(z.eJ\v(xz.yz,z,odo(x) . (5.12)

The vector function V(¥) or its representation as a sum of modes

N
viy) = z 4, © j’g(z 00, (2)eX TP ggx)y = 3 v, (y), (5.13)
=0 110,12 3z, n=0

are to be called propagating Herglotz function. The modes v,(y) are to be called

Herglotz modal solutions. That the v,(y) are actually solutions of Helmholtz’s equa-

82 d?
tion may be seen directly. If A, := 2 — + —, then

x?  oax?

By (1) = ~ k2aJIk? v, (y) = = ka v, (y)

Furthermore, since the functions ¢,(z) satisfy

0,(z) = k*a-1)0, ,
it follows that Av,(y) = - ;'czv,t (¥).

As the depth of the ocean h is permitted to increase more terms are permitted

in the sum (5.1). In the limit N — e and the system (5.5) would be replaced by an
infinite number of equations

VD . (r)F( e)-\} V.D.(r) j v, Ly(x¥2,2.0) doy)

ab

where V_ = A}im Vv » Dr):= hm Dy(r) are eo x oo matricesand F,y are

vectors in [5. Since vZl,and DZ'(r) existin {, we have formally that

F(z,8) = \/ ja“(”)m,y)do(y) (5.14)

where F and y may be thought of now as functions in L%(@K, x 8D ) and, hence

we shall drop the vector notation in what follows. For finite oceans not all of the



-24.

above modes propagate; however, for a deep ocean (5.10) will be a good approxima-

tion to the far field. Moreover, we also obtain

| §ERF oo = | 22 syydoqy) (515)
aZ, aD b

where

2 N ¢n (z )¢n (C) Tkt XK ¥y
vy ="\|— (z,8) —_— TR 4 48, (5.16)
Nime JECOZ T

aZl n=0

with 0 < h <o, and x| = 1.

We shall call such v(y) that

r—pes T

Hlllv(x)lzdx < o (5.17)

as generalized Herglotz wave functions, and g (z,8) is called the cylindrical Herglot:

kernel.

In what follows we shall consider the far fields which occur from the scattering

of the incident wave

i o ¢a(z) ikx, oy
ul(x) = -—-—---¢o = e (5.18)

off of the soft obstacle D. We denote these far fields as F(z,8;k;a;). The point
(0,0,z,) is taken to lie within D. Essentially we wish to find a solution u(x) of the
Helmholiz’'s equation in RJ /D  which vanishes on @D and such that

u(x) =u'(x) + u(x), where u*(x) is the scattered solution.

Theorem (5.1) Any propagating solution of the Helmholiz equation defined in all of
R} satisfving

i — [ v 12 dx< oo (5.19)
"1,

F —hoc
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#) »

2=k

and the boundary conditions 3
2

\ |z=0 =0 may be represented in the

form (5.12) for some g(z,0) € LY3Z,). Conversely, any solution in the form (5.12)
for some g(z.8) € LHOZ,) satisfies (5.19).

Proof. We first prove the direct part. Separation of variables leads to the following

expansion for v(x) defined in R}:

v(x5.2) = i i (Com I (k27 ) + dp ¥ (R, 7 )6 ™20, (2)

n={} m=—oe

As Y, (r}) is singular at r=0 this implies
=0, n=0,12---),(m=0,%1,+2,---). Hence,

V(Xp,2) = i f; Cpm T (k3,7 Y ™80, (2) . (5.20)

n=0 m=—=

The asymptotic condition (5.19) now implies
—||¢,1||2 J 3 3 Voun!? Uplka,)i2pdp < oo .
_0

On
2 —n Qn+1?n? |*
= | g, = |l--=——1 isa

Note that for any integer n > N with N = Py 4k 22

pure imaginary. Using

—T1 | e ikayr ~ i(m+44) 2
jm (kaur) - 27‘ka - [e-shz,r + i{m+¥ne +e 2 ]
n

we realize that since %r],,(ka,,r)—pm as 7 — o that ¢, =0 for Vv

n>N, (m=0,%1,22 ---). From this (5.20) reduces to the propagating wave

form

N = )
VX2 = Y Y Cumdm(ka,r)e™,(2) . (5.21)

n={ mz—oe
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To show V(x;,2) may be written in the form (5.16) we rewrite (5.16) in the form

k
Vixr) = Z i 0, (2)0,§

o e ATt Vg (L) ¢ db
K az00 ixg=1 N9,

where r = Ix;!. Using the Jacobi-Anger expansion one has

e—ika.rcos(H)= i (—i)m.fm(kanr)eim(H}

ML Siaaian

which permits us to rewrite V(x,,2) as

h 2 .
Vop =3 T 6n)em, kayr ] U [ 2 e

n=0 m=—eo "q’ “2

(0, Qe C.0)do dl] . (5.22)
If g2(L.0) is defined to be the function given by the series

N n iMe
gl =% X L
n=0 m=—n ," 2
2 ink

then v(x,,2) = V(x,,2). Moreover, since

9, Q'm0 (5.23)

h 2n

F - L]
H'MC@)WC do =2 TJ;E p D Y oS 9
n=0) m=—o

_%% 5;0 3 iy, 12 (5.24)

we may show that g ({,0)e L2(Z,)) if (5.23) is bounded. From (5.17) we have
z T ley, ! (% {14, (kanp)12pd p) < o
m=ree 0

Using the asymptotic expansion for large argument of the Bessel function we have

,
1 - 1
— 1], (k i<dp =
r (J). mka,p)1%dp ka, T

n

+02)
r
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(n=0,1,'_:',n),(m=0,i1,i2"‘). ThlSlmplleS z z |C,,m|2<°°. D

n=0 m=—c

To prove the converse part we assume g e L%Z,). From this we have

Vo = N\ IELEE)> 3 BB e "9‘
n=0  1®,]l
2 N |¢?n(z)| 1%(1';)‘ ikacx\ol

< =< |- lg(z,0) - g Y dz db

N7 L )8 10,17 |

g 5 , Y2
Y% l¢n(z)¢n( )I tka, <X, ¥

< ig(z,8)!2d2d8 l " dz df

N7t z [ai d ] ail 10, 12

S CWVligllLxgzy -

Consequently (5.17) is valid. The function Y (y) was shown to satisfy the Helmhoitz

equation. Obviously it satisfies the boundary conditions. [3

It follows from the above Theorem and (5.11) if k2 is a Dirichlet eigenvalue for the

Laplacian in D and v(x) a corresponding eigenfunction then

[ F(z.8:k;07)g(z,8)dz d8=0 . (5.25)
aZ,

Moreover, if k2 is not a Dirichlet eigenvalue and v(x) the solution of the boundary

value problem

Av+ktv =0 in D

(5.26)
vix) = -®(xx°) on oD ,
with x° := (0,0,2,)e D, then
| a—g\-(lﬂd)t_\',x")dco):u(”(xo):l . (5.27)

*
a0 b
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The equalities (5.20), (5.22) suggest that we follow Colton and Monk [Como 85},
[Como 87] and define the set F of far field patterns corresponding to a fixed domain
D and incident fields of the form (5.18)

F:i=(F(z,8kx%: logl =1} , (5.28)
and the set § |

S = (F(z,8;k;ay) - F(z 8k, a) : leyl = 1}, (5.29)

where ué is a fixed unit 2- vector. Then as in [Como 85] we notice that if k2 is a
Dirichlet eigenfunction then F is perpendicular to the Herglotz kemels of the eigen-
functions that are generalized Herglotz wavefunctions. Moreover, if k? is not a Diri-
chlet eigenvalue then 8 is perpendicular to the Herglotz kernel of the solution of
(5.21). In contrast to the case studied by Colton-Monk F € F is a finite dimensional
subspace of L%9Z,),

L%3Z)) = span F @ span (g} @ F*. (5.30)
whereas, the latter case becomes

L2@Z,)=span S @ span {g} @ . (5.31)

This means that as only a finite number of modes propagate any attempt to regain
structure in the target identification problem is constrained by the fact that

dim(F) < oo,
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